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Abstract

We introduce a neural network based image coding model that utilizes a code-space
predictor to reduce code length by modelling dependencies within the code. Inspired by
the prediction mechanism of inpainting, we learn a spatial predictor in the code space
to efficiently deal with spatial dependencies. It is jointly trained with the codec to es-
timate a probability distribution from adjacent code symbols. The resulting code stores
information related to the image and the prediction of neighbours. To improve its op-
timization, we adapt the Generalized Divisive Normalization into a sparse variant. The
resulting model outperforms other prediction based methods. We show that when inte-
grated with the recently proposed hyperprior model, our approach obtains state-of-the-art
performance for CNN-based image codecs on the MS-SSIM scale.

1 Introduction
The continuous growth of internet traffic and storage needs has mostly been driven by image
and video content, which has drawn significant interest in new image compression methods
from the machine learning community [2, 3, 4, 5, 6, 11, 14, 15, 17, 21, 22, 23]. Their operat-
ing scheme is similar to that of traditional codecs [7, 16, 18] which transform an image x into
a representation z and apply quantisation before encoding the discrete representation. These
transformations are hand designed and often based on the separation of frequency spectra.
On the other hand, machine learning based approaches can adopt their transformations to
the distribution given by training data and thereby allow simple fitting to new compression
scenarios.

Conventional codecs use prediction schemes, such as block-wise prediction in HEVC
[19], to improve coding gain beyond transform coding. In such schemes, a decoded block
can be used to predict an adjacent block, controlled by information that creates additional
overhead. Like prediction via inpainting [3], these methods operate in the spatially large
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pixel space, which makes them expensive to implement in a convolutional neural network.
Hence, another way is to predict in the spatially more dense latent space z. Typically, the
quantization result of z is encoded using an entropy coder, such as an arithmetic coder, that
simply assumes statistical independence between code symbols. Using spatial prediction
such dependencies are explicitly modelled to increase coding gain. We train a spatial predic-
tion architecture that can be efficiently applied in the code domain. It provides the arithmetic
coder with a neighbourhood-based probability estimate for the value to be encoded and is
jointly optimized with the codec. This leads to an encoder being able to embed predictive
information about neighbouring code symbols alongside transform-domain content of the
actual image. To facilitate its optimization, a variant of Generalized Divisive Normalization
transform with certain sparsity properties is proposed. Augmenting a simple feed-forward
model with the spatial predictor yields competitive performance, a new state-of-the-art in
learned image coding is reached once a hierarchical coding approach is integrated.

In summary, our contributions are as follows:

• A spatial code-space predictor is introduced to model dependencies between neigh-
bouring code variables and reduce the code length, leading to demonstrated coding
gain over previous methods.

• Additional improvement by integrating the spatial predictor and a hierarchical coding
approach is shown.

• A sparse version of the Generalized Divisive Normalization to improve coding perfor-
mance is introduced.

2 Review of Learned Image Compression
Image coding is typically implemented as a variant of transform coding [9] where the input
image x undergoes an encoding transformation fe(x) = z into code z before being quantised
into zq = q(z) by some quantization function q(). The discrete code zq can then encoded into
a bit stream by an arithmetic coder that in the limit approaches the cross entropy

Hzq,ẑq(x) = Ezq

[
log2

(
Pẑq(zq;ψẑq)

)
|x
]

(1)

between the empirical code distribution Pzq(zq|x) of the image and its estimate Pẑq(zq;ψẑq),
where the parameters ψẑq are obtained over a representative dataset. To reduce the entropy
and thereby the coding rate, the encoder fe and the estimate Pẑq need to be fit. At the same
time, a distortion D(x, x̂) measuring the dissimilarity between the input image x and the
decoded image x̂ = fd(zq) returned from the decoder fd has to be minimized. This leads to
the rate-distortion objective

LRD = Hzq,ẑq +λD (2)

The parameter λ determines the exact position of the rate-distortion trade-off. When the
transformations z = fe(x;θe) and x̂ = fd(zq;θd) are chosen to be parametric, the codec can
be optimized towards the choice of distortion measure and the underlying distribution of the
image data. This allows to obtain codecs for certain kinds of imaging data and different ap-
plications in an entirely unsupervised fashion. To optimize the codec with gradient descent
methods, all parts need to have a derivative. In the current formulation, the quantization and
the entropy estimation involve discrete data and are hence not continuously differentiable.
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Both can be remedied by introducing uniform noise at training time as shown for example in
[5]. For brevity, the details can be found in Section 8.1 of the supplementary material.

When fe and fd are realized by neural networks, minimizing Eq. 2 becomes formally
equivalent with training a variational autoencoder (VAE; Kingma et al. [13]) as shown by
Balle et al. [5] and Theis et al. [21]. This basic framework enables us to learn more advanced
image coding methods in an end-to-end manner.

3 Proposed Method
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Figure 1: The encoding (left column) and the decoding (right column) process in the com-
pressive autoencoder (CAE) augmented with the spatial code-space predictor.

3.1 Code-Space Predictor
The model of the latent code introduced in Section 2 assumes that code symbols zq are
independent of each other, i.e.

Pẑq(zq) = ∏
i

Pẑq(z
i
q) (3)

with i indicating the i-th position in the code tensor zq ∈ ZH×W×C. Balle et al. [5] have
shown how to employ a special type of non-linearity to increase independence in the channel
dimension of the code. Independence in the spatial domain is hard to achieve. If one patch
is repeated several times, then the receptive field for the code vector corresponding to that
patch would have to span all patches. This would yield a dramatic increase in complexity.
Instead, we approach this problem by introducing a spatial predictor that is supposed to learn,
depending on the code vector for a patch, when such neighbouring relations are likely. It
thereby models dependencies between adjacent code elements by predicting the parameters
ψp of a distribution

P(zq) = ∏
i

P(zi
q|{z j

q} j∈N(i);ψp) (4)
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conditioned on a neighbourhood N(i) of already decoded code elements {z j
q} j∈N(i) around

the i-th position. For brevity, we denote the set of neighbourhood code elements as zN(i)
q =

{z j
q} j∈N(i). Fig. 1 shows the integration of the spatial predictor in the compressional au-

toencoder (CAE) architecture. We model the distribution in Eq. 4 as mixture of equally
weighted Gaussians such that the free parameters to be predicted are the mean µk and the
standard deviation σk of each component k:

Pẑq(z
i
q|z

N(i)
q ;ψp) =

1
K

K

∑
k
N
(

µk(z
N(i)
q ;ψp),σk(z

N(i)
q ;ψp)

)
(5)

That is, there are 2k prediction functionsFp = {µk(z
N(i)
q ),σk(z

N(i)
q )}k required that. We learn

these using a variational approach. Note that the predicted probabilities are conditioned on
quantized, already decoded code elements which ensures that encoder and decoder both
obtain identical predictions. As shown in Fig. 2, these probabilities are then provided to the
arithmetic coder to ensure that the number of bits per symbol approaches the conditional
cross entropy

Hzq,ẑ = ∑
zq

Pzq(zq|x) log2(Pẑq(z
i
q|z

N(i)
q ;ψp)) (6)

Using the techniques described in Section 8.1 of the supplementary material, this is replaced
by a differentiable expression. The total objective to be minimized with respect to θe, θd ,
and ψp is

LPredictor(θe,θd ,ψp) = Ezq

[
log2(Pẑq(z

i
q|z

N(i)
q ;ψp))

]
+λEx [D(x, x̂)] (7)

The objective is fully differentiable with respect to the parameters to be learned and hence
gradient descent methods can be applied to minimize in an end-to-end manner.
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Figure 2: Process of obtaining probability distribution over a code vector (yellow) from ad-
jacent code vectors (green). The spatial predictor takes a set of neighbouring code vectors as
output and generates a probability distribution for each element in the adjacent code vector.
From these distributions, probabilities for each symbol are generated and provided to the
arithmetic coder.

3.2 Sparse Generalized Divisive Normalization to Ease Optimization
of the Augmented CAE

Optimizing the proposed model leads to a gradient being backpropagated from the loss in
Eq. 2 to zq through three paths: via the distortion, directly through the entropy and indirectly
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through the spatial predictor (see Figure 1, Quantizer in the left column), resulting in a four
term total differential:

dLRD

dzq
=

dD(x, x̂)
dzq

+
∂Hzq,ẑq

∂ zq
+

∂Hzq,ẑq

∂ µk

dµk

dzq
+

∂Hzq,ẑq

∂σk

dσk

dzq
(8)

To ease optimization, the weight updates from each of the four terms should interfere as
little with each other as possible. One way to achieve this is orthogonality by sparsity, i.e.
the sets of weights that are altered by each of the gradients are mutually exclusive. At
the same time, we would like to preserve the beneficial effects to transform coding of the
Generalized Divisive Normalization (GDN) transform as introduced in [4] and first applied
to image coding networks in [5]. The GDN aims at reducing redundancies between channels
and hence applies a different normalisation to each channel at the same spatial position. The
original formulation for activations xi,c with i being the spatial and c being the channel index
is given by

GDN(xi,c) =
xi,c

(βc +∑
C
e wc,e|xi,e|αc,e)εe

(9)

Its derivative w.r.t xi,d is given by

∂GDN(xi,c)

∂xi,d
=

δc,d

(βc +∑
C
e wc,e|xi,e|αc,e)εc

−
αi,dwc,dεcxi,c|xi,d |αi,d−1sign(xi,d)

(βc +∑
C
e wc,e|xi,e|αc,e)εc+1

(10)

By inserting a ReLU non-linearity in the denominator, we can achieve a sparser gradient.
We further simplified the function by setting αi, j = 2 and εi = 0.5. In addition, βc is replaced
by 0.1+ReLU(bc), which, if bc is initialized to 0.9 leads to a stable convergence behaviour.
The resulting sparse GDN is shown in eq. 11.

SGDN(xi,c) =
xi,c√

0.1+ReLU(bc)+ReLU(∑C
e wc,ex2

i,e)
(11)

Its derivative w.r.t xi,d is given by

∂SGDN(xi,c)

∂xi,d
=

δc,d√
0.1+ReLU(bc)+ReLU(∑C

e wc,ex2
i,e)

−
wc,dxi,dxi,c1

∑
C
e wc,ex2

i,e>0

(0.1+ReLU(bc)+ReLU(∑C
e wc,ex2

i,e))
3
2

(12)

Note that the first terms in both eq. 10 and eq. 12 differ from 0 only if the gradient w.r.t to the
same channel c is taken, i.e. d = c. The second term in eq. 12, however, differs from 0 if the
scalar product ∑

C
e wc,ex2

i,e exceeds 0, the chance which, for w initialized with a distribution
symmetric around 0, is 0.5, assuming that xi,e is independent and identically distributed over
index e. Comparing this to eq. 10, the insertion of the ReLU operation induces sparsity
into the GDN, which empirically leads to a higher coding gain. The sparse inverse GDN
(SIGDN) is defined analogously to the inverse GDN in TensorFlow:

SIGDN(xi,c) = xi,c

√√√√0.1+ReLU(bc)+ReLU

(
C

∑
e

wc,ex2
i,e

)
(13)
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4 Experimental Results

4.1 Setup

The encoder fe and the decoder fd are both realised as convolutional neural networks. We
use four convolutional layers with SGDN/SIGDN as non-linearities for encoder and decoder.
The decoder uses transposed convolutions to allow for efficient upsampling. The spatial
predictor has three layers. The first two layers have 2×2 filters, the last one has a 3×3 filter,
of which the bottom row and the two rightmost elements of the middle row are masked,
so that no code that has not been decoded can be accessed. The two preceding layers are
padded accordingly for the same reason. For the kN mean estimates of the Gaussian mixture
in Eq. 5, we use the outputs of the last layer directly; for the standard deviation estimates, we
use the exponential activation function to constrain them in the positive domain and avoid a
collapse where the probability is only assigned to a very small fraction of the code symbols
which could cause a very high entropy. In all experiments, we set k = 4, as we found that
higher values did not result in a better coding gain. To account for the fact that higher
bit rates require more filters, we chose two model configurations: a more efficient one for
rate points below 0.9bpp and a more complex one for those above. Network structure and
training methodology are detailed in Section 8.2.1 of the supplementary material. In order
to obtain different rate-distortion trade-offs, most approaches resort to varying the parameter
λ in eq. 2. For the spatial predictor, we found that varying the number of channels in the
code tensor gave better performance. The reason may lie in the fact that the spatial predictor
requires the code to store both, information about the reconstruction of the image as well as
for the prediction of neighbouring code vectors. Hence, less channels with higher entropy
may be more suitable.

4.2 Comparison to Existing Works

We compare our work to conventional codecs as well as CNN-based image coding solutions
on the Kodak dataset, which is a widely adopted benchmark for image compression. It com-
prises 24 RGB images sized 768×512 pixel. MS-SSIM [24] is used as similarity metric as
most other works have adopted it. It computes values in the interval [0,1] for two given im-
ages, where the maximum denotes maximal similarity. To obtain a rate-distortion curve, we
adopt the procedure used in [17]: for all images, MS-SSIM measurements are interpolated at
the same bpp values from the test results obtained from different models. At each point, the
average over all images is taken and its value converted to logarithmic scale is reported. As
before, we train different models for different trade-off points, varying the numbers of code
channels within 32, 48, 64, 96, 128, 192 and 256.

For comparison with CNN-based codecs, we chose the state-of-the-art [6], the approaches
by Rippel and Bourdev [17] and Mentzer et al. [15] as they implement different types of pre-
dictors to reduce the code entropy and the approach by Johnston et al. [11], which uses
recurrent neural networks. We chose JPEG [16], JPEG2000 [18] and BPG [7] as conven-
tional image compression codecs to compare with. The former two are widely adopted lossy
image codecs with low computational footprint. BPG is based on the x265 library for video
coding and tuned to optimize the SSIM metric. The results are shown in Fig. 4, a visual com-
parison with BPG and [15] is provided in Fig. 3. Our approach outperforms the approaches
by Rippel and Bourdev [17] and Mentzer et al. [15] for all bit rates tested, although they a
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Figure 3: Visual comparison between our method (top; 0.116bpp / 0.9458 / 25.11dB),
Mentzer et al. [15] (middle; 0.124bpp / MS-SSIM and PSNR n/a) and BPG (bottom;
0.113bpp / 0.9184 / 26.4dB). The first highlight (top of the lighthouse) demonstrates de-
tail preservation of our approach compared to Mentzer et al.’s recurrent predictor. BPG has
distortion and blocking artifacts (highlights two, three and four), that do not occur in both
trained approaches.
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Figure 4: Comparison of coding performance on the Kodak dataset between recent em-
pirical image coding approaches, conventional codecs and our proposed approach. MS-
SSIM performance is measured in the RGB domain without chroma subsampling. BD-
Rate [8] savings of our codec (with integration) against machine learned codecs are -3.2%
(Balle et al.), -7.2% (Our’s w/o integration), -15.9% (Rippel & Bourdev), -20.5% (Mentzer
et al.) and -40.8% (Johnston et al.); against conventional codecs -41.4% (BPG), -51.4%
(JPEG2000) and -65.7% (JPEG), respectively. The logarithmic MS-SSIM is computed by
−10log10(1−MS-SSIM).
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employ more complex architectures. A multi scale encoder is used in the work of [17] and a
much deeper 15-stage ResNet in [15]’s approach. This shows that spatial prediction is more
effective than channel prediction as in [15] or bit-level prediction in [17]. Compared to the
current state-of-the-art by Balle et al. [6], our approach underperforms for lower and higher
bit rates, their BD-rate savings towards us are about 4%. One reason for this may be that
a different network architecture is applied or that a larger, high definition custom dataset is
used for training. Conventional codecs often resort to combining different coding tools to
compensate for each other’s weaknesses. By integrating our approach with that of Balle et
al. [6] as described in Section 8.2.3 of the supplementary material, we achieve a new state
of the art, thereby showing that each approach models slightly different dependencies. This
state of the art achieves 3.2% higher BD-rate gain than the current best approach. We note
that our reproduction of [6]’s codec does not yet give the same results as they reported, so
that we assume that with all implementation details from both approaches available, an even
higher coding gain is possible.

4.3 Spatial Predictor and Sparse GDN under constant Complexity
In conventional coding, complexity is often an issue. Hence we are interested in the coding
gains from the spatial predictor when the complexity is kept constant. In this experiment,
we show the coding gain improvement over the approach from Balle et al. [5], where code
symbols are modelled as independent. We use the same network structure and only reduce
the number of filters in each layer from 192 to 160 to account for the additional complexity of
the spatial predictor. We vary the number of code channels for different rate-distortion trade-
off points and train five different models. The results are shown in Fig. 5. Using the GDN
provided by TensorFlow [1], the spatial predictor achieves a modest gain over the baseline,
while the Sparse GDN yields further improvements. This shows that with approximately the
same complexity in terms of floating point operations, the spatial predictor can achieve a
higher coding gain.

5 Related Works
Several CNN-based image compression methods has been introduced in the literature. Baig
et al. [3] have shown how to utilize inpainting to increase the coding gain, however the
resulting model is complex as predictions happen in pixel space and not in the spatially sub-
sampled code space. This may be the reason why their approach’s overall performance is
not competitive. The approaches by Rippel & Bourdev [17] and Mentzer et al. [15] com-
bine transform coding and prediction. Rippel & Bourdev apply prediction only on the bit
level and require a more complex multi-scale architecture. They further resort to an energy
function to enable bit level prediction instead of training in an end-to-end manner. Mentzer
et al. apply channel-wise prediction which requires them to use of a 3D-CNN and a very
deep network, though [5] has shown how to reduce inter-channel dependencies with a new
non-linearity. Incorporating this non-linearity allowed us to appropriately model the remain-
ing spatial dependencies. The current state-of-the-art [6] uses additional latent variables to
model relations between code vectors. The latent variable model acts as a scale hyperprior
to the actual code, estimating the code’s variance only. Though their approach is similar to
ours, both approaches together achieve an even higher gain, showing that the dependencies
modelled by their approach differ from those modelled in our approach. Lastly, the works
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[11, 22, 23] by Johnston, Toderici et al. develop a residual coding approach, that iteratively
produces layers of binary codes. Dependencies between different bit layers are modelled
by a recurrent neural network, which is fundamentally different from our direct transform
approach. Their approach could be augmented with a spatial predictor, though.

6 Conclusion
Our approach has shown how to successfully apply the spatial prediction concept of inpaint-
ing to the more compact code space domain. Training a spatial predictor jointly with the
codec demonstrates higher coding gain than similar approaches that employ prediction. A
simple integration with the hierarchical approach yields a new state of the art for CNN-based
image coding, opening a path for further advances in this field.
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